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Abstract. This paper is a detailed development from two recent publications. One of these 
(Silver 1979) showed that conventional equations for entropy flux and mass flux as coupled 
linear functions of their conjugate forces necessarily imply the existence of an uncoupled set 
of fluxes and forces also. This paper generalises that result and derives an alternative set of 
flux force conjugates in which each flux is collinear with its conjugate force. This is valid 
irrespective of extent of departure from equilibrium. The other publication (Silver 1977) 
suggested the use of the concept of disequilibrium. This paper develops that concept 
rigorously to give a phenomenological model of the steady state, and so derives valid 
meanings for non-equilibrium properties irrespective of extent of departure from equili- 
brium. These properties are used in the proposed flux force conjugates and form the basis of 
equations for entropy generation in any steady state. The theory is consistent with 
conventional near-equilibrium theory, but capable of much wider application. The scope, 
indicated in a final section, includes thermoelectric effects, flow in porous media and 
membranes, and biophysical as well as engineering processes. The important principle 
established is a continuity of analysis over the whole range from reversible equilibrium to 
highly irreversible non-equilibrium steady states. 

1. Introduction 

Contemporary theory of non-equilibrium thermodynamics is founded on the work of 
Onsager and has been developed in very great detail by numerous workers over the last 
forty years. Among the main contributors to these developments have been Prigogine, 
De  Groot, Meixner and Truesdell. The result has been the creation of an impressive 
distinct field of mathematical physics, Their work has recently been well presented and 
summarised by Lavenda (1978) who adds some valuable contributions in respect of 
extending the theory to nonlinear thermodynamics. 

These sophisticated mathematical developments establish rigorously the logical 
validity of certain important properties and parameters, but in many of the actual 
applications of irreversible thermodynamics the phenomenological analysis which uses 
these properties and parameters is formally simple. This is well exemplified in 
contemporary treatment of the irreversible thermodynamics of the steady state. 
Irrespective of the underlying complexity, the overall steady-state situation is described 
in terms of a mass flux J,, which is constant, and an entropy flux J,, which increases. 
Interest centres on the rate of entropy generation, div J,, which is expressed in the form 

(1.1) T div J, = J , .  X, + J ,  . X,. 
0305-4470/80/103253 + 22$01.50 @ 1980 The Institute of Physics 3253 
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X ,  and X ,  are generalised ‘forces’, and the underlying concept is that X, is cognate to J, 
and X ,  to J ,  as shown by the form of the vector products in the entropy generation 
equation. However, it is a result of the fundamental mathematical analysis that J, and 
J,  may be expressed as linear functions of X,  and X, in the form 

Js = A J ’ s  + A s m X m  J ,  = A,,X, + A,,X,. (1.2) 

Thus each of the two fluxes is affected by both forces, which are therefore said to be 

The two important results of the underlying statistical analysis are 
(i) that each of the coefficients A is an equilibrium property, and is therefore 

constant for a given p ,  T, independent of X,  and X,;  
(ii) that the cross-coupling coefficients are equal, i.e. that 

coupled. The coefficients A,, and A,, are called the cross-coupling coefficients. 

A s ,  = Ams. (1.3) 

This simple linear relationship has served well for the treatment of many steady- 
state irreversible processes in physics and engineering and will be found exemplified in 
such text-books as Denbigh (1950), Zemansky (1957) and Benson (1967), while its 
relation to fundamental theory is discussed by De Groot (1961). 

The application of this method is wholly dependent on the constancy of each A and 
on the equality of the cross-coefficients. If neither of these can be assumed, the 
application cannot proceed. The validity of the fundamental analysis which establishes 
these propositions (i) and (ii) above is therefore essential to the utility of the method. 
Now the mathematical analysis can only be satisfactorily accomplished for pertur- 
bations not far removed from equilibrium, and hence the procedure outlined above 
cannot be used with confidence in situations known to be very far from equilibrium. 
Hence, although the theory is concerned with non-equilibrium, it assumes that local 
equilibrium exists at every location. The inherent inconsistency of this has been 
accepted on the presumption that it would not be applied to highly non-equilibrium 
situations. But, as has recently been remarked by Jaynes (1980), ‘A local equilibrium 
approach has no criterion for judging its range of validity and provides no basis for 
further development, since it contains scarcely any quantity that has a precise meaning 
in a non-equilibrium state. The logic of using equilibrium relations in non-equilibrium 
situations was hardly an advance over that used by Thomson in 1854’. Moreover, in 
modern practical developments such as thermo-electric refrigeraticq, membrane 
purification processes, steady multi-phase flow, plasma flow, and the like to which the 
application of steady-state non-equilibrium thermodynamics could be expected to be 
beneficial, the conditions are usually very far removed from equilibrium. Some 
alternative procedure must be found to deal with such cases. Given the lack of 
fundamental statistical analysis of such situations, it is evident that we have to proceed, 
via macroscopic observables and phenomenological conceptualisation of non-equili- 
brium, to establish parameters which can be operationally measured. 

It is, of course, obviously essential that the proposed development must satisfy all 
known macroscopic physical principles, and must, in the limit tending to near-equili- 
brium conditiflns, reduce to the accepted forms. The object of this paper is to present 
such a development with as much rigour as possible. 

Two preliminary publications towards this end have already appeared. The first 
(Silver 1977) introduced formally a quantity termed the disequilibrium as a measure of 
the difference between the potential of a steady maintained non-equilibrium condition 
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and that of the equilibrium state at the same pressure and temperature. The second 
(Silver 1979) showed that the conventional equations of the form ( l , l ) ,  (1.2) and (1.3) 
necessarily imply the simultaneous presence of an uncoupled set of fluxes and forces. It 
was also shown that the physical significance of the uncoupled set is quite clear, and it is 
rather surprising that this situation has not been noticed earlier. It raises several 
important questions on the relationship between the forms of equations and the 
macroscopic conceptual pattern. 

The present paper proceeds from these two preliminary publications. Section 2 
generalises the result of Silver (1979) and shows that the choice of flux-force relations 
for the steady state is much more open than has been supposed. Sections 3-7 develop a 
phenomenological model of the steady state in terms of the concept of disequilibrium 
initiated in Silver (1977), establish its quantitative definition more rigorously, and lead 
to the formation of an entropy generation equation which is not restricted to near- 
equilibrium conditions. Subsequent sections use the flux-force relations established in 
§ 2 to discuss the behaviour in general. 

2. General theory of flux-force relations 

We begin by showing that the proposition established in Silver (1979) is merely a special 
case of a more general and indeed very elementary theorem. It is in fact rather puzzling 
that this appears to have escaped notice previously. The point will be realised by 
considering equations (1.2) as forming a matrix. It is then elementary that if the 
coefficients A,,,, and A,, are equal the matrix can be diagonalised. Physically this means 
that the set of equations in which each flux has to be expressed in terms of both forces 
can be replaced by a set in which each flux is collinear with its own conjugate force. Now 
that matrix theorem is valid for any number of elements so that, if for all pairs A i k  = A k i ,  
any number of fluxes can be expressed as collinear with their conjugate forces. But 
conventional Onsager-based theory has so far insisted always on the need to express 
each flux in terms of all forces, and the collinear sets have been neglected. There may be 
good reasons for that insisten-e in the general case for many fluxes and forces, and 
within the constraint of linear elations for near-equilibrium conditions, and also with 
the constraint of satisfying the I mtropy generation equation corresponding to equation 
(1.1). But, in the case of the non-equilibrium steady state which is describable in terms 
of only two fluxes J, and Js, there is no good reason for ignoring the possibility of 
collinear relations. Indeed, as will be shown, they bring many advantages. 

There is also the more general point of considerable epistemological significance, 
which arises from the fact that the converse of the matrix theorem is also true. Thus if it 
is asserted as a macroscopic physical principle that the flux vector which responds to a 
force vector must be collinear with it, then ariy set of flux-force conjugate pairs which 
satisfies the same constraints must have equal cross-coefficients. The equality will arise 
directly from the assertion of the macroscopic physical concept and will not require 
foundation in statistical theory of underlying microscopic behaviour. 

However, our main concern is with the advantage which can be gained in practice by 
using the collinear set for the non-equilibrium steady state which is describable in terms 
of only two fluxes J ,  and J,. To bring the matter out in its full physical significance, the 
following rather long derivation is given in place of the simple matrix theorem. 

At this stage the thermodynamic context is irrelevant and we consider any two force 
vectors XI and X 2  which act at a location in a reference space. Provided they are not 
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collinear, they define a plane. If J1 and Jz constitute a pair of flux vectors, equations of 
the general form 

J i  = AiiXi + A  ~ z x z  J z = ~ z i X i + ~ z z X z  (2.1) 
assert only that each flux vector lies in the plane defined by X I  andXZ. By general form 
we mean here that the A coefficients need not be regarded as constants, i.e. they may be 
scalar functions of X i ,  X z .  A set of the same form where each A is constant is a special 
case. 

The further assertion of the form 

A = J I  . X i + J z . X z ,  (2.2) 
where A is a scalar constant, states a characteristic of the flux-force vector set J1 ,  X 1  and 
Jz,  X z  which must be preserved for any alternative set. 

It is elementary to see that, by the introduction of a scalar quantity a, an alternative 
set J ; ,  X i  and Jz ,  X i  which preserves relation (2.2) can be obtained by writing 

A = (J1 -aJz) . Xi  + 52 . (ax1 + X z )  (2.3) 

A = J i  . X , + J Z . X ;  (2.4) 

or 

where 

J i  = J1- aJ2 x ;  = ax1 + x z .  

and X ;  are thus co-planar with J I ,  JZ and X I ,  X Z .  
Combining equations ( 2 . 5 )  and (2.1), we find 

(2.5) 

J ;  = [A i i  - a  ( A Z I  + A i z )  + a2AzzIXi + ( A i 2  -aAzz)X; 
(2.6) 

Jz = ( A 2 1  - ah2z)Xi + AzzX;. 

Thus if two co-planar fluxes J1 ,  Jz exist as conjugates to X i  and X z  to satisfy the 
constraint (2.2), there is a whole envelope of such possible co-planar sets which will 
satisfy the same constraint. That envelope can be generated by varying the coefficient 
a. The effect is that while the vectors X I  and Jz are retained, J ;  and X ;  can be given 
varying magnitude and direction by varying a. Thus J ;  and Xb can be rotated in the 
defined plane. 

Now we consider the implications of making the additional assertion that the 
cross-coefficients A z l  and A12 are equal. It is immediately seen from equations (2.6) that 
the first implication is that, if the cross-coefficients are equal for any set in the co-planar 
envelope, they are equal for all sets, although the equal value will vary with a. Thus the 
property of equality of cross-coefficients is either possessed by the whole envelope, or it 
is not possessed at all. Again this conclusion is valid even if the various A coefficients are 
not constants. 

A further implication is also clear. Within an envelope of equal cross-coefficients 
there exists one set for which the equal value is zero. From equations (2.6) this occurs 
when the value of a is such that 

h 1 ~ = A ~ 1 = ~ h ~ ~ .  (2.7) 
For this set the flux J ;  is collinear with the force X i ,  and the flux Jz is collinear with 

the force X ; .  Thus if it is asserted that the cross-coefficients for any set are equal, there 
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exists a set where each flux is collinear with its conjugate force. Conversely, if there is 
no collinear set, there can be no set with equal cross-coefficients. Again, all these 
statements are valid even if the A coefficients are not constants, i.e. any of the 
coefficients A l l ,  A I Z ,  A Z 2  and the scalar quantity a may be scalar functions of XI, X 2  
or XI, X;. Thus the relations of equations (2.1) and (2.6) may be nonlinear. The 
theorem is concerned with the characteristics of co-planarity and collinearity, and not 
with linearity of relations. 

In the thermodynamic context, this point is important because the conventional 
assumption of linear relations, i.e. of constant coefficients, means that coupling inter- 
actions between two forces do not appear in the set for which the fluxes are collinear 
with their conjugate forces. Thus accepted theory of the steady state, although it is 
based on the assumption of equality of cross-coefficients, has ignored the collinear set 
which is a necessary consequence of that same assumption. It is therefore likely that 
unnecessary complication has been introduced into the analysis of irreversible proces- 
ses by using coupled flux-force sets in cases where, if the two assumptions of constant 
coefficients and equal cross-coefficients are actually valid, an uncoupled set must be 
available. The important point is that by allowing the coefficients to vary as scalar 
functions of the forces the collinear set may include coupling interactions, whereas so 
long as the coefficients are regarded as constant the collinear set is necessarily 
uncoupled. 

The possible spectrum of generalisation can therefore be seen as ranging from, at 
one end, the conventional treatment where both the assumption of constancy of 
coefficients and that of equality of cross-coefficients are made, and to the other extreme 
where neither of these assumptions is used, The conventional extreme gives linear 
relations and a collinear set which has up to now been neglected. The other extreme 
would give nonlinear relations and would deny the existence of a collinear set. In 
between these two extremes, there is the possibility of abandoning the assumption of 
constant coefficients but retaining that of the equality of cross-coefficients. That is the 
procedure which we are now suggesting. It will form a continuity with conventional 
theory, coinciding with it in the limit where the coefficients are constant. 

When a collinear set is chosen it may be given the following notation, where the 
primes could be dropped but are retained to avoid confusion: 

J ;  = A 1x1 52 = A&;. 

By comparing with the coefficients of equation (2.6), we have 

A 1 2  = A 2 1  = ah2 = A ~  +a2,i2 A 2 2  = A2. 

The practical situation is always that we have to measure experimental quantities in 
order to find three parameters, which may be either the set A l l ,  A I 2  = h21, A 2 2  or 
A l ,  A Z ,  a. The quantities which may possibly be accessible to experiment are the fluxes 
J1, J ; ,  J2, and the forces XI, X2, X;. 

It must be emphasised that, since either a collinear set or a non-collinear set is 
available under the constraint of equality of cross-coefficients, the decision as to which 
to use must be made on extraneous grounds. The neglect of the collinear set in 
conventional steady-state theory could perhaps be justified if there were apparent 
reasons for believing that no collinear set could be physically identified in the thermo- 
dynamic context. But it was shown in Silver (1979) that for the conventional near- 
equilibrium case such a set does have a clear physical identity and significance. It will be 
shown in this paper that this is still true for our more general development, and we shall 
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therefore give priority to the use of a collinear set. By adopting it, departures from 
linearity in the underlying phenomena can be accommodated by the greater generality 
which allows the coefficients to vary. Only experimental measurement can establish the 
extent to which this may be needed in steady-state conditions very far from equilibrium. 

Perhaps it should be mentioned that in referring to a ‘collinear set’ only collinearity 
of conjugates is meant. The two forces are not in general collinear. 

We now proceed to develop a phenomenological model of the steady state without 
restrictions to near-equilibrium to which the flux-force relations can be applied. 

3. Description of steady-state non-equilibrium 

In general qualitative terms, the steady-state non-equilibrium is observed in what is, to 
macroscopic observation, a continuum, when at any location the macroscopically 
observed values of pressure, temperature and constitution are constant in time but vary 
with location, so that steady gradients of these properties are also maintained. If 
isolated, such a situation could not persist, and its maintenance requires the provision of 
fluxes of energy and/or mass through the continuum from sources to sinks. 

To formulate a detailed quantitative description of this steady state we consider a 
representative unit mass at a location to be heterogeneous and non-uniform. By 
heterogeneous and non-uniform we imply that it has within it distinguishable elements 
which are themselves internally homogeneous and uniform, and which we shall term 
homogeneities. Each such homogeneity will be identified by its subscript i as an 
individual element homogeneous in its constitution and phase, and uniform in pressure, 
temperature and velocity. The mass concentration of homogeneity of kind i will be 
denoted by bi, so that b l ,  bz, . . ., bi, . . . etc are the masses of kind i contained in the 
representative unit heterogeneous non-uniform mass. Each homogeneity is a bulk 
element, i.e. it is presumed to contain a sufficient number of molecules to have the 
properties pressure, temperature and constitution properly ascribed to it, and therefore 
its velocity is a bulk velocity. Elements which differ in any one or more of the 
characteristics constitution, phase, pressure, temperature, velocity, will be regarded as 
different homogeneities having a different subscript. 

The description of a homogeneity as homogeneous in constitution does not neces- 
sarily imply that it contains only a single chemical species. It may be a mixture of 
different species but, as defined, the proportions of these species throughout the extent 
of the homogeneity are uniform. Thus if zj  denotes the mass fraction of an individual 
species j per unit mass of the heterogeneous whole, we may presume that the mass ti,i of 
that particular species is present in bi. We then have the relations 

bi = 1 ti,; for all i ti = zj,i for all j .  
i i 

Also 

E b i = l  t j  = 1. 
i i 

(3.1) 

(3.2) 

Now in general it would be possible for such a mixture, although uniformly mixed, to 
be not in equilibrium proportions and for reaction to be occurring within it. For the 
present discussion we shall exclude that possibility and assume that each homogeneity is 
internally at eqililibrium, each at its own value of pressure p I  and temperature T,. Thus 
each z,,,/b, is an equilibrium proportion of the substance j within the homogeneity i at 
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the conditions p i ,  Ti. The non-equilibrium consists in the co-existence within the 
heterogeneous mass of these individual internally equilibrated homogeneities. The 
resultant reactions and interactions between them occur in the steady state, accom- 
panied by fluxes of mass and energy, in such a way that the non-equilibrium condition at 
each location is constant in time but varies with location. 

With this model it follows that each homogeneity has a set of specific thermo- 
dynamic properties Vi, V,, Si, etc which are functions of p i ,  Ti and the (equilibrium) 
proportions zj , i /bi .  Each homogeneity will also have kinetic energy i v f  per unit of its 
mass independent of its constitution. Moreover, if potential fields are present, each 
homogeneity will also have potential energy 4i per unit of its mass. This potential d i  
will in general depend on the constitution, unless the field is purely gravitational, and, if 
the field includes magnetic as well as electric potential, may also depend on U;. 

Hence we can ascribe to each homogeneity the specific energy content per unit of its 
mass 

E j =  Ui+di+$Vf. (3.3) 

It follows that the representative heterogeneous non-equilibrium mass at a location 
has an energy per unit mass given by 

where 

5 = 1 bici 
and 

u2 = 1 b i ( V i  - q2 

(3.5) 

(3.6) 

The velocity B is the mean velocity of the heterogeneous mass flow. It is helpful also 
to define the relative velocity vri of any individual homogeneity to the mean mass flow as 

v r i  . = v , - B  L - (3.7) 

The following thermodynamic properties are also attributable to the heterogeneous 
mass flow per unit mass: 

specific internal energy 

specific volume 
U = 1 biUi 

v = 1 biVi 

specific entropy s = 1 biS, (3.8) 

specific enthalpy 

specific Gibbs potential 

H = 1 bi( Vi + p i V i )  = O + 1 bipiVi 

d = 1 bi( Vi +piVi  - Tis;) = I? -1 biT,Si. 

In this model a homogeneity at a location flowing with velocity vi and having a 
specific volume vi constitutes a stream occupying a fraction ai of unit cross-sectional 
area of the continuum. Thus there is a homogeneous stream mass flux Ji of amount 

Ji = aivi/ Vi. (3.9) 

Now we presume that the situation is isomorphic, so that the fraction ai is equal to 

ai = biVi/ v. (3.10) 

the volume fraction occupied, so that 
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Thus 

Ji = bivi/ v. (3.11) 

The total mass flux of all streams is therefore 

J ,  = 1 J ,  = 171 V. (3.12) 

The relative flux of any individual stream is defined by 

J,,i = biv,i/ V = Jj - bi J,,, (3.13) 

and of course 

1 J,,i = 0. (3.14) 

The total enthalpy flux due to the various streams is given by 

J , , ~ ( H ~  + 4i + ;U:). J , ( H ~  + 4i +&I:) = J,(B + 4 + io2 + ;c2) + (3.15) 

Thus the total enthalpy flux appears in two separable components, namely the mean 
enthalpy carried along with the overall mass flux J,, and a component arising from the 
effects of all the individual relative mass fluxes Jr,i.  Since X J,.i is zero, this latter 
component is not associated with any macroscopically observable mass flow, and 
therefore must appear as what we normally call heat flux. We therefore designate it as 
heat flux arising from relative mass motion and denote it by the symbol J,,,, writing 

J , , r=C J,,i(Hi + 4 i + $ v f ) .  (3.16) 

Recognition of J,,, reminds us that in a general description of the non-equilibrium 
steady state we should include the presence of heat fluxes. We therefore allow that 
there may be present various heat fluxes J,,k, each having its individual temperature Tk. 
The total heat flux present in the steady state will be denoted by Jq and its amount is 
given by 

I 

(3.17) 

This total heat flux in the non-equilibrium steady state has associated with it all the 

We may also note the total entropy flux J,. This will be given by 
individual temperatures Tk and Ti. 

J, = c Jq,k/ Tk + 1 Jjsj = 1 Jq,k/ Tk + Jr,isi + J,S. (3.18) 

To conclude the description of the non-equilibrium steady state we give the mass 

k i k i 

conservation and energy conservation equations, 

div J ,  = 0, (3.19) 

while in general for each individual stream 

div Ji # 0. (3.20) 

The energy equation is 

div( 1 J,,k +E Ji(Hi + d j  +$U;) 
k i 

(3.21) 
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Using equations (3.15)-(3.17), this becomes 
0 

div Jq = - Wd - J,  . grad(l? + 6 + 45’ + $a2). (3.22) 

It will be understood that in this model of the steady state interactions, including 
chemical interactions, are presumed to occur as the individual streams flow with 
changing Ti and pi. These interactions are subject to the constraint of internal 
equilibrium at Ti and p i ,  and to the overall conservation equations (3.19) and (3.22). But 
there is no other limitation on the variety nor range of Ti and p i  which may occur from 
stream to stream, and hence no constraint on the extent of non-equilibrium. We now 
seek a means of describing this non-equilibrium quantitatively, and to do so we first 
study the exergy characteristics of the steady state. 

4. Exergy in the steady state 

The exergy of a thermodynamic system is defined, with reference to an arbitrary 
reservoir at stated temperature To and pressure p o ,  as the maximum work which the 
system could produce in changing from its initial state to a final state in equilibrium with 
the reservoir. Thus the exergy is a function of both the system and the reservoir. 

We now consider the exergy of the steady-state non-equilibrium condition which we 
have described in B 3. There are various contributions to be taken into account. First 
we have the heat flux contributions. Each flux Jq,k at temperature Tk gives an exergy 
flux contribution of 

Jl\ ,k  =Jq,k(l - To/Tk). (4.1) 
Then we have the contributions arising from the mass fluxes. If we denote by Ai  the 

exergy of unit mass in the condition i, each mass flux 4 will give an exergy flux 
contribution 

J A , j  =J;:hj. (4.2) 
The total exergy flux is therefore 

(4.3) 

Now it can be shown that the exergy of unit mass of the homogeneity in the condition 
i is given by 

:hi = H, + 4i + + U T :  - T ~ S ,  - (To+ go). (4.4) 
The quantity go in equation (4.4) is the mean Gibbs potential per unit mass in the final 
equilibrium at To, po .  At this equilibrium the mass fractions zi for each species j will 
have changed to equilibrium proportions zh0 and so give the equilibrium set of Gibbs 
partial potentials for each species. These partial potentials are denoted by gi,o and the 
mean value is go given by 

Correspondingly we have 

60 = zj,04i. 
i 
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4j is the field potential per unit mass of species j ,  and is independent of thermodynamic 
conditions, But because of the constitution proportions bo does depend on the 
thermodynamic condition. 

For convenience we introduce the combined potential q0 which is defined by 

rL0 = $0 + Eo. (4.7) 

We can now use these relations in substituting from equation (4.4) into (4.3) and find 

J A = C  Jq,k +E J r , i ( H i + 4 i + i u ? ) - T o ( C  J q , k / T k  +C Jr,iSi)+Jmx. (4.8) 
k 

Now of course from equation (4.4) we also have 

(4.9) 

With this, and referring back to equations (3.16), (3.17), and (3.18),  the exergy flux 
equation becomes 

(4.10) J~ = J~ + J, (IT + $ + fa2 + f a 2 )  - T~ J, - J,$,. 

Combining this relation with the energy equation (3.22), we find 

div JA = - w d  - To div J, - J, . grad To - J,,, . grad io. 
0 

(4.11) 

However, in the conventional treatment of exergy the reservoir conditions are 
considered to be a fixed reference base, so that the last two terms of equation (4.11) 
vanish, leaving 

(4.12) 

In the steady state div J, is the rate of entropy creation per unit volume, and must be 
positive. Equation (4.12) is a familiar form, showing that the loss of exergy appears 
either as work output or as entropy creation. In a continuum where there is no means of 

work interaction W, is zero, and the loss of exergy on a reference base To appears 
entirely as creation of entropy multiplied by that base temperature. The derivation 
given above shows that the results are valid in the presence of many different heat and 
mass fluxes, with widely differing temperatures and pressures, and with no restriction on 
the extent of chemical reaction which may occur as the fluxes move through the 
reference continuum. We make use of this fact to introduce the new concept which we 
term disequilibrium. 

0 

5. The concept of disequilibrium 

It is common experience that in a steady state which is known not to be in equilibrium, 
appropriate sensors may nevertheless record steady mean values of temperature and of 
pressure, and hence steady values of the gradients of these properties. Without at 
present exploring the relation which will be shown to exist between these steady 
observed values, which we denote by T and p respectively, and the many different Tk 
and Z and pi included in the actual detail of the fluxes, we temporarily accept, on the 
basis of such experience, the hypothesis that T and p are observable. We then propose 
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to define a measure of the extent of non-equilibrium which exists at the location where 
T and p are observed, by the exergy in relation to a reservoir for which To = T and 
pa = p .  This is a valid procedure since the choice of a reference reservoir is arbitrary. 
The important distinction is that the exergy determined on this basis is a function of the 
non-equilibrium condition alone, since along with all Tk and all T and pi it uses the 
observed T and p ,  instead of an extraneous reference base. 

Hence, for distinction, we adopt the name disequilibrium for this characteristic, and 
denote it by the distinct symbol 7 in place of A. The whole analysis proceeds precisely 
as in 9 4 up to and including the result corresponding to equation (4.1 l), 

0 

div 5, = - Wd - T div J, - J, . grad T - J,,, . grad q0. (5.1) 

The suffix zero retained on &o denotes that it is an equilibrium value assessed now at 
T, p .  Hence the terms in grad T and grad io do not vanish and we do not proceed to a 
relation corresponding to equation (4.12). Instead, we have to consider the physical 
significance of the concept of disequilibrium in the steady state. 

When a steady state is established the conditions throughout the reference space 
remain constant in time, no matter how diverse and non-uniform they may be. The 
fluxes of energy and matter from sources to sinks proceed steadily with generation of 
entropy. We know that if the fluxes were not maintained the system must decay to 
equilibrium. The meaning of a steady state is that the non-equilibrium condition can be 
maintained for the duration of that state. On this reasoning we suggest, as a physical 
principle, that when a steady state is set up the various reactions and interactions of the 
heat and mass fluxes occur in such a way that there is no generation nor reduction of 
disequilibrium anywhere in the reference space ; i.e. that 

div J, = 0. (5 .2 )  
The constraint imposed by adopting equation (5.2) may be regarded either, as we 

have suggested, as the actual physical condition set up by the processes which occur in 
any steady state, or as a special case which is assumed for further development. 
Certainly equation (5.2) does provide a basis for very important and useful results, as 
will be seen in the following material. 

Using condition (5.2) in equation (5.1), we can proceed immediately to the entropy 
generation equation 

0 

T div J, = - Wd - J, . grad T - J,,, . grad qO, (5.3) 

For a continuum in which no means of work action exists, this becomes 

T div J, = -J, . grad T - J,,, . grad (5.4) 

Equation (5.4) will be recognised immediately as a form familiar in contemporary 
theory of irreversible thermodynamics. But although the form is identical, the 
significance of our development is substantial. In contemsmary theory the relation 
(5.4) is derived only on the basis of assuming local equilibrium at the observed T, p at 
every location, and is valid only for near-equilibrium conditions. In contrast our 
development has placed no restriction on the extent of non-equilibrium which may be 
present, other than the proposition that the steady state, no matter how great a 
disequilibrium is set up anywhere in the reference space, behaves so that no further 
change of disequilibrium occurs. This proposition is obviously physically consistent 
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with the concept of ‘steadiness’. It is also evident that the conventional assumption of 
local equilibrium is an unnecessary constraint and limitation. The theory now proposed 
removes that limitation and opens the way for the application of equation (5.4) to 
situations grossly far from equilibrium. 

However, it may be argued that observed values of T and p are more acceptable 
when local equilibrium can be assumed than in the highly non-equilibrium conditions 
which we have described in terms of various Tk, Ti and pi, unless some relationship can 
be derived between these various values and the values T, p recorded by appropriate 
sensors. We therefore proceed to show in the next section that such relationships can 
indeed be found. 

6. The reference temperature and pressure for disequilibrium 

In § 3 we found that the total heat flux, including the contribution arising from the 
relative mass motion, was given by equations (3.17) and (3.16) as 

Jq = E  Jq,k +E Jr,,(H1 + 6 +bf). (6.1) 
k I 

It is also apparent from equation (3.18) that the entropy flux associated with all the 
contributions to Jq, which we may denote by Js,q, is given by 

Js,q = Js - J,s= 1 Jq,k/  Tk + 1 J,,,Sl. (6.2) 
k I 

It is therefore possible to use equations (6.1) and (6.2) to define quite precisely a 
temperature such that if it were applicable to the whole of Jq the entropy flux would 
agree with the actual value arising from all the individual contributions. Let us denote 
this temperature by Tq;  its defining equation is 

J,/T, = JS.,. (6.3) 

The detail of equations (6.1) and (6.2) shows that the definition of T, given by (6.3) 
fully subsumes all the individual Tk and T,. 

The exergy of Jq with respect to a reservoir at To is now simply Jq (1 - To/ Tq) ,  and is 
of course zero with respect to T,. Thus if a sensor inserted at the location remained at a 
temperature below Tq it could extract work from the heat flux, while if it attained a 
temperature greater than T, work could be supplied. In this sense T, is a temperature 
which is in ‘equilibrium’ with all the actual Tk and T,, and on this basis we now assume 
that the observed value T of temperature in the steady state will be equal to Tq as 
defined by equation (6.3). 

This argument may be summed up in the statement that we shall assume that the 
value of temperature T observed by an appropriate sensor in the non-equilibrium 
steady state is given by the equation 

It is this temperature T as defined by equation (6.4) which is the basis for the 
measurement of the disequilibrium 77. Using equation (4.4), the disequilibrium per unit 
mass of an individual stream is given by 

(6.5) vi =Hi +di +$U: - TSi -$o. 
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Correspondingly the mean value of disequilibrium per unit mass of the hetero- 
geneous non-equilibrium flow is 

i j  = B + + ifi’ + +V* - TS - $0. (6.6) 

It should be remarked that although the exergy and disequilibrium expressions 
contain only the reference temperature explicitly, the reference pressure is also present 
implicitly, since the equilibrium constitution, and hence the potential J0, depends upon 
pressure as well as on temperature. For the disequilibrium the reference pressure must 
be p ,  where p is the observable pressure resulting from all the individual pi. The 
appropriate value may be established as follows. 

Each individual pi acts over the area cross-section ai occupied by the stream Ji. 
Hence the effective pressure over unit area is 

Using equation (3.10) for ai gives 

p v = bipi Vi. 
i 

Equation (6.8) defines the pressure p observable in the non-equilibrium condition, 
which along with T gives the reference base for the disequilibrium. 

It is evident that there are two very different circumstances under which the mean 
disequilibrium i j  will be zero. One of these is obviously when each individual q z  is zero 
for all i. This is the case of true equilibrium, implying uniformity of p i  and Ti for all i at 
the macroscopically observed values p and T. The second possibility is that although all 
qi are not uniformly zero, their weighted sum i j  = I; biqi = 0. This forms a local 
quasi-equilibrium giving the zero value of disequilibrium. Now it is suggested that 
although conventional irreversible thermodynamics of the steady state is usually said to 
be based on the assumption of local equilibrium, it must actually correspond to local 
quasi-equilibrium as described in the second case where i j  is zero despite individual 
variations. The first case, with all qi individually zero, cannot seriously be expected to 
be true for any real irreversible steady state. 

For any condition, no matter how far from equilibrium, the mean values of any of 
the specific properties entropy, enthalpy, etc, are given in general by s = Z biSi, 
fi = I; biHi etc. For the special case of local quasi-equilibrium where fj = 0, we may 
usefully adopt the special symbols so, Go, etc. At true equilibrium the corresponding 
values would of course be So, Ho, etc. 

We now note an important consequence of the definition of T. Referring back to the 
exergy flux equation (4.8) in terms of a reference base To, we observe that if equation 
(6.4) were satisfied by To = T, the exergy flux would reduce simply to J m i .  It follows 
therefore that the disequilibrium flux is always simply Jmf, and hence the assumed 
steady-state condition of equation (5 .2 ) ,  that divJ, must be zero, means that the 
disequilibrium i j  attains a uniform value throughout the reference space in the steady 
state. Conventional theory has a similar but more restrictive condition, since the 
assumption of local equilibrium means that disequilibrium is uniform, at the particular 
value zero. 

The useful conclusions of this section are that the values of T, p and i j  are well 
defined characteristics of the actual non-equilibrium condition, and so validate the 
applicability of the entropy generation equation (5.4) derived in the previous section. 
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As already noted, the form of that equation is identical to that familiar in accepted 
Onsager-based theory, but the significance has important differences. These are 
discussed in the next section. 

7. Correspondence of parameters 

In this section we note the correspondences and differences between the concepts and 
parameters used in contemporary accepted theory of the steady state, and those which 
arise from the treatment we propose. Particular attention must be devoted to those 
parameters appearing in the entropy generation equation (5.4). 

The temperature T and pressure p carry the same significance intrinsically in both 
cases, of being macroscopically observable characteristics. The combined potential J0  

is also the same in both cases, being the value for equilibrium at T, p .  In conventional 
theory, however, it is assumed that all properties can be taken as having equilibrium 
values for the temperature and pressure at the location, and that the actual conditions 
are never very far from equilibrium at any point. On this basis, as is well known, the 
fundamental statistical mechanics upon which accepted theory is based predicts the 
existence of certain parameters, usually denoted by S". H*, etc, which are also 
properties of the equilibrium state. Their values, which characterise the response to 
small near-equilibrium perturbations, can be calculated from the statistics of specific 
microscopic models, and usually differ in value from the corresponding So, Ho, etc. In 
contrast, our model puts no constraint on the extent of non-equilibrium, and gives the 
disequilibrium f j  as a quantitative measure of that extent. However, we do adopt the 
constraint that, whatever the value of f j ,  it is uniform throughout the reference space of 
the steady state. Conventional theory has the similar but more restricting condition of 
limiting the uniform value to zero. 

The general values 3, fi, etc of our phenomenological model when v is not zero must 
be regarded as quite distinct from the parameters S",  H",  etc of conventional theory. 
However, in our theory we recognise the possibility of a quasi-equilibrium condition 
where f = 0, and it can be surmised that the values so, go, etc in that condition may be 
identified with S",  H",  etc. 

We now turn to comparison of the theories in respect of entropy generation, as given 
in equation (5.4). For convenience we repeat that equation and renumber it here: 

(7.1) 
As noted already, the form of the equation is the same as that of accepted theory. 

But despite the formal identity there are very substantial differences. The extent of 
non-uniformity in the various p l  and T,, and the differing values of Tk, are not allowed 
for at ail in accepted theory, nor is the non-zero uniform disequilibrium. As a result of 
the presence of these features in our case there is an important difference in the meaning 
of the entropy flux J,. In our case we have, with covplete generality, 

J, = Jq/ T + J,S (7.2) 

J, =Jq/T+J, , ,S*.  (7.3) 

J, = Jq/ T + J,,,s,. (7.4) 

T div J, = -J, . grad T - J,,, . grad qO. 

while in accepted theory 

However, when f j  = 0 we have in our case 
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Thus, if we accept the identification of So with S" as suggested above, our 
phenomenological treatment gives an entropy generation equation which is fully 
consistent with accepted theory for the case of zero disequilibrium, but which may be 
extended to conditions far from equilibrium. The quantity in our case is the specific 
entropy of the heterogeneous unit mass and as such its meaning is continuous from the 
true equilibrium value So through the quasi-equilibrium value So to the general 
non-equilibrium value. However large, or small, i j  may be, the analysis gives a precise 
meaning to s as biSi. Although it may not be possible to determine its value by 
statistical mechanics for conditions far from equilibrium, its existence and significance 
are well defined by the present theory. 

This is as far as the introduction of the concept of disequilibrium alone can take us. 
In essence its contribution is to enable a reinterpretation of the usual form of the 
entropy generation equation (7.1). To make further progress we now transform that 
equation, by applying the general considerations on collinearity of flux-force vector 
pairs which we established in 8 2 and have not yet used. 

8. Flux-force relations in entropy generation 

We can now consider the entropy generation equation (7.1) in the light of the general 
discussion on flux-force relations given in § 2. Recalling that 

J, = Jq/ T + J,,,s, 
we see that equation (7.1) can be written in either of the two alternative forms 

T div J, = -Js . grad T - J ,  . grad J0 

T div J, = -(Jq/ T )  . grad T '- J, . (3 grad T + grad Jo).  

(8.1) 

(8.2) 

or 

Comparison with the general theory in 8 2 shows the following correspondences. 

T div J, corresponds to A 

J S  

-grad T 

corresponds to J1 

corresponds to XI 

J,, corresponds to Jz 

-grad Jo  corresponds to Xz 

Jq/ T ZE J, - SJ, corresponds to J i  

- (S  grad T +grad J0) corresponds to Xh 

s corresponds to a. 

Since the flux J, includes the contribution SJ,, J,  and J ,  are not mutually exclusive. 
In contrast, the fluxes Jq and J, are mutually exclusive since Jq was carefully defined to 
exclude any and all energy or enthalpy carried along with J,. The fact that Jq includes 
contributions carried along with each of the subordinate relative mass fluxes Jr,i is 
irrelevant in this connection, since Z J,,i = 0 whatever the value of J,. 
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We now suggest that the mutual exclusion property of the vectors 5, and J,, gives an 
acceptable reason for assuming that these form the possible collinear set with respective 
conjugate forces discussed in 0 2. Thus we write 

Jq = -A, grad T (8.3) 

J, =-A,(Sgrad T+grad  q0). (8.4) 

It is then merely formal to show that the set with equal cross-coefficients discussed in 
$ 2 is 

J, =-(A,/T+A,S2)grad T-A,Sgrad& 

J, = -A,S grad T - A, grad qo. 
(8.5) 

(8.6) 

Equations (8.5) and (8.6) may be compared with the results of conventional theory 
for the near-equilibrium steady state, which are 

J,= -(K/T+S*’/r)grad T-(S*/r)grad Go (8.7) 
J, = -(S*/r) grad T - ( l / r )  grad qo. (8.8) 

In these equations S* is the entropy transport parameter already discussed in Q 7. It 
was shown therein that s corresponds in our general theory to S * ,  with its particular 
value so at quasi-equilibrium being identified with S* .  The coefficient K is the thermal 
conductivity measured under conditions of zero mass flux, while r is the resistance to 
mass flux measured under conditions of zero temperature gradient. Since in the 
conventional theory S * ,  K and r are all equilibrium properties, they are constants in 
these equations and assumed to be valid under any conditions. 

It is evident from equations (8.3) and (8.4) that A, is a concept of thermal 
conductivity corresponding to K and that A, is a concept of reciprocal of resistance to 
mass flux corresponding to l / r .  Thus our results (8.5) and (8.6) correspond 
phenomenologically with the accepted results (8.7) and (8.8), with s, A, and A, taking 
the place of S* ,  K and l / r  respectively. They will therefore agree precisely at 
near-equilibrium conditions if, as suggested in Q 7,  so is identified with S * .  

The practical difference and advantage is that the whole conceptual pattern can now 
be extended without misgiving to conditions far from equilibrium, where 3, A, and A, 
need not be constant. The value of A, can be obtained without restriction to zero mass 
flow and that of A, without restriction to zero temperature gradient, and experimental 
results will determine the extent to which the three parameters may in fact be variable. 

We may note for later use that when equations (8.3) and (8.4) are used, the entropy 
generation rate becomes 

T div J, = Jz/A,T f JilA,, (8.9) 
i.e. the contributions from 5, and J, are individual. If any coupling exists between these 
contributions it is catered for by variations in A, and A,. 

It is noteworthy that although the conventional theory emphasises coupling 
between J, and J, and uses the forms of equations (8.7) and (8.8) in the entropy 
generation equation of the form (8,1), the final result gives exactly the same: 

T div J, = J;/KT f r J i .  (8.10) 

The formal equivalence of A, and K, and of l / A ,  and r has already been noted. 
It is unnecessary to develop these correspondences much further in detail. It is 

sufficient to remark that every phenomenon discussed by conventional theory in terms 
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of S" can be equally well discussed in terms of s a n d  its range of applicability very much 
Ixtended. The expansion of grad J0, which is common to both conventional theory and 
our equations, gives 

grad J0 = Vo grad p - So grad T + gi,o grad zj,o + grad $o. (8.11) 

When this is inserted into equation (8.4), we have the condition that J ,  can be zero 

g,,o grad zi.o = (s - So) grad T. (8.12) 

Conventional theory gives the same result with S" instead of s. 
This is the equation which accounts for the existence of a pressure gradient or a 

potential gradient as a result of a temperature gradient. It is inherently a non- 
equilibrium effect since it vanishes when s, or s" in conventional theory, is equal to So. 

It is obvious that the familiar 'heat of transport' T(S" -So) of conventional theory is 
generalised in our case to T(S- S o ) .  Moreover, recalling the discussion of the potential 
4i in 0 3, it will be realised that where electromagnetic effects are present the relative 
directions of the underlying individual streams will have significance. 

The important conclusion of the whole theory is that, if we accept the descriptive 
model of the steady state in terms of uniform disequilibrium, as developed in § §  3-7 
inclusive, all the consequent steady-state phenomena can be discussed in terms of the 
experimentally accessible parameters A,, A, and s, and such that discussion is continu- 
ous with conventional theory, reducing to the latter for near-equilibrium conditions. 
Evidently the actual utility of this in steady-state applications known to be very far from 
equilibrium, such as turbulent multi-phase multi-component flows, MHD plasmas and 
the like, can only be tested by experimental work, but at least it provides a reasonable 
ground for extension of irreversible thermodynamics to these fields of work. These 
possibilities will be further studied in future papers. Meanwhile a brief indication of the 
scope for applications, and some preliminary results, are given in the next section. 

when 

Vo grad p + grad Bo + 

9. Applications and scope 

The previous sections have established the main objectives of this study, namely (a) that 
the choice of fluxes of heat and mass collinear with their respective conjugate forces is as 
valid as the conventional choice of a non-collinear set, and (b) that a phenomenological 
model of the steady state can be developed to give valid meaning to the specific 
properties entropy, enthalpy, etc, under steady-state non-equilibrium conditions. It 
has also been shown in § 8 that the use of this treatment gives the same results as 
conventional theory for totally dissipative flows at near-equilibrium conditions, but is 
capable of extension to conditions far from equilibrium. It is therefore worthwhile to 
add a brief concluding section illustrating the possible scope of the theory. 

First we establish certain interesting interrelations. We may expand the entropy 
generation rate as follows: 

T div J, = T div(J,/T + J , s )  

= div Jq - (Jq/ T) . grad T + TJ, grad s. 
Then using equation (8.9) and (8.3) we find 

(9.1) 

-div Jq + J i / A ,  = TJ, . grad S. (9.2) 
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The LHS of equation (9.2) is the sum of the heat absorption plus dissipation due to 
mass flow, per unit volume. Note that the dissipation Ji/AqT is not included. 

Now let us define a property T as the sum of heat absorption plus frictional 
dissipation per unit mass per unit temperature rise, i.e. the definition of this property is 

-div Jq + J k / A ,  
J,,, . grad T ‘ 

T =  (9.3) 

Equation (9.2) shows therefore that 

T = T dS/dT. (9.4) 

Similarly, if the mass flux crosses a constant temperature discontinuity from a region 
A to a region B, we may define a property II as the sum of the heat absorption plus 
frictional dissipation per unit mass in crossing from A to B, i.e. the definition of this 
property is 

Equation (9.2) shows that 

Finally, if we define the total integral of heat absorption plus frictional dissipation 
per unit mass making one circuit of a closed loop, as a property denoted by 6, equation 
(9.2) shows that 

(9.7) 

Now if the loop contains two distinguishable portions A and B and is such that J, 
flows from A to B at TI and from B to A at T2, we have 

2 

[ab = -1 S b  d T - (9.8) 
1 

Thus we see that if T2 is kept constant and TI varied, and denoted by the general 
symbol T, 

dtah/dT = s h  - sa = n a b /  T. (9.9) 

Also from equations (9.6) and (9.4) we see that 

(9.10) 

Thus the following interrelations are established: 

n a b =  T dtah/dT ra - T b  = -T d2tab/dT2. (9.11) 

Equations (9.11) are immediately recognisable as the familiar so-called ‘thermo- 
couple relations’, and we have used familiar symbols. But, as shown, they are 
completely general for any loop circuit in the steady state, irrespective of the nature of 
the mass flux, irrespective of load and irrespective of extent of departure from 
equilibrium. When the mass flux carries a charge, the results give electrical current and 
potential. There are several other important points to note in comparison with the 
present state of thermocouple theory. 
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First of all, when J, is zero we have the value T O  as 

T O =  T dSo/dT. 

We have correspondingly 

(9.12) 

(9.13) 

(9.14) 

The superscript on these values denotes the condition when the mass flux is zero. 
This must not be regarded as necessarily a near-equilibrium state, for with a high 
temperature difference the heat flux may be substantial and the situation highly 
irreversible. The thermal dissipation J : / A  qT is active throughout, and without it the 
circuit conditions could not be maintained. But it requires experiment or statistical 
theory to relate it to the value of so - So which is maintained. Phenomenological theory 
cannot accomplish this. (It must be recalled that the definitions do not require any of 
the properties to be constant independent of fluxes and forces.) 

In contrast, accepted contemporary theory assumes near-equilibrium conditions 
with constant properties and is only valid for such situations. This is met by our case by 
using the value go instead of s or so. Conventional theory has the same results with S", 
confirming our view that so is identical with S* .  

Perhaps the most important result of our treatment is to show that the interrelations 
are totally independent of the value of 3, although the numerical values of 7,l-I and 5 will 
be dependent on the actual value. Hence the interrelations could be derived by treating 
the circuit as if it were in equilibrium, i.e. using So throughout instead of 3. This is 
essentially what Kelvin did, although he did not use the entropy concept, and our 
analysis explains fully why he obtained the correct results. He was fully aware that the 
thermocouple was merely one example of a convective circuit and indeed in one little 
known paper (Thomson 1882) discussed it as an analogue to a thermosyphon hot water 
system. 

Another important feature is that the Thomson effect, Peltier effect and Seebeck 
effect are all functions of s and not of the difference between and So.  Unfortunately 
some writers in their accounts of the thermocouple imply that the effects arise because 
of this difference, via the pressure gradient or potential gradient set up by a temperature 
gradient according to equation (8.12). But equation (9.2) shows quite clearly that 
although these effects do exist the heat absorption is related to s irrespective of the 
difference between s and So. The property T is quite simply the non-equilibrium value 
of specific heat, having the limiting equilibrium value T dSo/dT for ideal equilibrium 
conditions, and T dgo/dT for quasi-equilibrium. Thus the pre-Onsager writers who 
referred to the Thomson coefficient as the 'specific heat of electricity' were essentially 
correct, although they tend to be scorned by the more sophisticated attitudes of today. 

In this connection it can be seen that the conventional presentation of Thomson and 
Peltier effects in physics texts obscures their real nature. Typically the Thomson effect 
is discussed in terms of 'maintaining a particular temperature distribution' in a wire. It 
is said that if that distribution is noted at zero current and then a current is supplied 
along the wire 'the heat that must be supplied or extracted at all places along the wire to 
restore the initial temperature distribution is called the Thomson heat. If the current in 
one direction requires heat to be supplied to maintain the distribution, current in the 
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reverse direction will require heat to be extracted to maintain the distribution so the 
effect is reversible.’ 

But this is just the same as a fluid flowing along a tube with heat supplied all along the 
tube, although no-one would describe it in such terms. We simply say that we heat it or 
cool it, but we could use the same vocabulary as is conventionally used for the 
thermocouple as follows. At a steady state we establish a definite temperature 
distribution along the tube. If we increase the mass flow rate we have to increase the 
heat supply rate to maintain the same temperature distribution. If we reverse the flow 
we have to extract heat to maintain the same distribution. In short, the Thomson 
phenomena of heat rate and flow rate in a thermocouple wire are exactly those familiar 
in a heat exchanger tube. The correspondence is really trivial, but it is rather a pity that 
the discussion of thermoelectric phenomena usually obscures it. 

However there are important differences within this correspondence. (i) Usually 
the resistive dissipation effects are proportionally much greater in the case of current 
flow in a wire than in fluid flow in a tube. (ii) Because of the much higher thermal 
conductivity of the wire, and the proportionally much lower rate of lateral heat 
absorption than in the fluid flow case, the heat absorption in an element length dx in the 
wire case has to include a significant proportion from the variation of axial heat flux 
which in the fluid flow case is usually negligible. (iii) Because of these differences, it is 
hardly possible to maintain the temperature distribution along a tube with extremely 
low fluid flow rates approaching zero, whereas in a wire we can easily have zero current 
with a given temperature distribution. 

But in fluid flow along very fine capillaries, and in flow through porous materials and 
membranes, these differences will become less marked. In such applications, therefore, 
it may be useful to bear in mind the correspondence with thermoelectric phenomena. 
This may have special relevance in biophysics, and may be useful for analogue 
modelling. 

The above remarks refer to the Thomson effect, or Peltier effect, considered singly. 
The interrelations, and the Seebeck effect of a completed loop circuit, will have obvious 
relevance wherever capillary fluid circuits occur. Again these may arise in biophysics 

Finally it is easy to show that if wd is retained in equation (7.1) instead of being put 
equal to zero, the whole analysis still applies and the entropy generation equation (8.2) 
contains only a single additional term: 

applications. 0 

0 

T div J, = - wd - (Jq/ T) . grad T - J ,  . (3  grad T + grad io). (9.15) 

This, together with the fact that the theory is applicable to steady states, however 
great the irreversibility or non-equilibrium condition, should enable it to be used 
profitably in application to many situations in mechanical, electrical, chemical and 
process engineering. 

The important point of principle is the continuity of the amlysis over the whole 
range from equilibrium thermodynamics to highly irreversible steady states. 

Acknowledgments 

In the work from which this paper has developed I have had at various times the benefit 
of discussions with colleagues at the University of Glasgow, in particular, Dr R 



Irreversible thermodynamics of the steady state 3213 

Muncaster, Professor S J Thomson, Dr G A P Wyllie and the late Mr J R Tyldesley. I 
have also benefited from correspondence with Professor P Meares, Dr Y M El-Sayed, 
Professor H C Simpson, Dr K S Spiegler and Professors M Tribus and G B Wallis. I 
would like to acknowledge the encouragement which their interest has given me, and to 
express the hope that they may find the outcome worthwhile. 

Appendix 1. List of symbols 

fraction of cross-sectional area occu- 
pied by homogeneity of kind i 
general scalar 
mass concentration of homogeneity i 
partial chemical potential per unit 
mass of species j at equilibrium 

chemical potential of unit mass of 
homogeneity i 

enthalpy of unit mass of homogeneity i 

flux symbols for general discussion 
mass flux rate of stream of homo- 
geneity i 
total mass flux rate = I Ji 
Ji - biJm relative mass flux rate 
total entropy flux rate 
heat flux rate entirely unassociated 
with any mass motion (occurring at 
temperature Tk) 
heat flux rate arising from relative 
mass motion 
= I J,,, ( H i  + CP + 4 of  ) 

total heat flux rate = & Jq,k + Jq,r 
thermal conductivity 
observed steady state pressure at 
reference location 
pressure in reservoir 
pressure of homogeneity i 
dissipative resistance to mass flux 
entropy of unit mass of homogeneity i 

value of 3 with zero mass flux 
value of s at quasi-equilibrium 
value of at true equilibrium 
entropy transport parameter 
temperature defined by equation (6.4) 
and shown in 4 6  to be observed 
temperature 
temperature associated with the heat 

temperature in reservoir 
temperature of homogeneity i 

I: zj.ogj,o 

Z hiG, 

P b,Hi 

I biS, 

flux Jq,t 

internal energy of unit mass of homo- 
geneity i 

velocity of stream J,  
I biv, 
V i  - 5 
volume of unit mass of homogeneity i 

6, Vi 

rate of work delivered from unit 
volume 
mass concentration of species j in unit 
heterogeneous mass 
mass of species j in the homogeneity bi 

Z biU, 

Zl.i.0 

ZI.0 

XI, X,, X ;  force symbols for general discussion 
Xs force conjugate to J, 
X m  force conjugate to J,,, 

mass of species j in the homogeneity b, 
when at equilibrium within b, 
mass concentration of species j at final 
equilibrium 

scalar property defined in 0 2 
energy of unit mass of homogeneity i 
I biei energy of unit heterogeneous 
mass 
field potential of unit mass of homo- 
geneity i 
I: biq$ field potential of unit hetero- 
geneous mass 
field potential of unit mass of species j 
I z i , o ~ i  field potential of unit hetero- 
geneous mass at equilibrium 
exergy of unit mass of bi 
exergy of unit heterogeneous mass 
disequilibrium of unit mass of homo- 
geneity i 
mean disequilibrium of unit hetero- 
geneous mass 
with various suffixes defined in text- 
coefficients in flux-free relations 
generalised properties corresponding 
respectively to Thomson, Peltier and 
Seebeck properties in a thermocouple 

TI 

ii 

A 

T, n, 6 

(Lo 60+ go 
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